Search results for " kinase inhibitor"
showing 10 items of 368 documents
The emergence of drug resistance to targeted cancer therapies: Clinical evidence.
2019
For many decades classical anti-tumor therapies included chemotherapy, radiation and surgery; however, in the last two decades, following the identification of the genomic drivers and main hallmarks of cancer, the introduction of therapies that target specific tumor-promoting oncogenic or non-oncogenic pathways, has revolutionized cancer therapeutics. Despite the significant progress in cancer therapy, clinical oncologists are often facing the primary impediment of anticancer drug resistance, as many cancer patients display either intrinsic chemoresistance from the very beginning of the therapy or after initial responses and upon repeated drug treatment cycles, acquired drug resistance deve…
Advances in Targeting Signal Transduction Pathways
2012
// James A. McCubrey 1 , Linda S. Steelman 1 , William H. Chappell 1 , Lin Sun 1,2 , Nicole M. Davis 1 , Stephen L. Abrams 1 , Richard A. Franklin 1 , Lucio Cocco 3 , Camilla Evangelisti 4 , Francesca Chiarini 4 , Alberto M. Martelli 3,4 , Massimo Libra 5 , Saverio Candido 5 , Giovanni Ligresti 5 , Grazia Malaponte 5 , Maria C. Mazzarino 5 , Paolo Fagone 5 , Marco Donia 5 , Ferdinando Nicoletti 5 , Jerry Polesel 6 , Renato Talamini 6 , Jorg Basecke 7 , Sanja Mijatovic 8 , Danijela Maksimovic-Ivanic 8 , Michele Milella 9 , Agostino Tafuri 10 , Joanna Dulinska-Litewka 11 , Piotr Laidler 11 , Antonio B. D’Assoro 12 , Lyudmyla Drobot 13 , Kazuo Umezawa 14 , Giuseppe Montalto 15 , Melchiorre Cer…
CXCR7 Reactivates ERK Signaling to Promote Resistance to EGFR Kinase Inhibitors in NSCLC
2019
Abstract Although EGFR mutant–selective tyrosine kinase inhibitors (TKI) are clinically effective, acquired resistance can occur by reactivating ERK. We show using in vitro models of acquired EGFR TKI resistance with a mesenchymal phenotype that CXCR7, an atypical G protein-coupled receptor, activates the MAPK–ERK pathway via β-arrestin. Depletion of CXCR7 inhibited the MAPK pathway, significantly attenuated EGFR TKI resistance, and resulted in mesenchymal-to-epithelial transition. CXCR7 overexpression was essential in reactivation of ERK1/2 for the generation of EGFR TKI–resistant persister cells. Many patients with non–small cell lung cancer (NSCLC) harboring an EGFR kinase domain mutatio…
FGFR a promising druggable target in cancer: Molecular biology and new drugs.
2017
Abstract: Introduction: The Fibroblast Growth Factor Receptor (FGFR) family consists of Tyrosine Kinase Receptors (TKR) involved in several biological functions. Recently, alterations of FGFR have been reported to be important for progression and development of several cancers. In this setting, different studies are trying to evaluate the efficacy of different therapies targeting FGFR. Areas Covered: This review summarizes the current status of treatments targeting FGFR, focusing on the trials that are evaluating the FGFR profile as inclusion criteria: Multi-Target, Pan-FGFR Inhibitors and anti-FGF (Fibroblast Growth Factor)/FGFR Monoclonal Antibodies. Expert opinion: Most of the TKR share …
De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments.
2013
Protein kinases constitute an attractive family of enzyme targets with high relevance to cell and disease biology. Small molecule inhibitors are powerful tools to dissect and elucidate the function of kinases in chemical biology research and to serve as potential starting points for drug discovery. However, the discovery and development of novel inhibitors remains challenging. Here, we describe a structure-based de novo design approach that generates novel, hinge-binding fragments that are synthetically feasible and can be elaborated to small molecule libraries. Starting from commercially available compounds, core fragments were extracted, filtered for pharmacophoric properties compatible w…
Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma
2013
Background Tumor models are critical for our understanding of cancer and the development of cancer therapeutics. Here, we present an integrated map of the genome, transcriptome and immunome of an epithelial mouse tumor, the CT26 colon carcinoma cell line. Results We found that Kras is homozygously mutated at p.G12D, Apc and Tp53 are not mutated, and Cdkn2a is homozygously deleted. Proliferation and stem-cell markers, including Top2a, Birc5 (Survivin), Cldn6 and Mki67, are highly expressed while differentiation and top-crypt markers Muc2, Ms4a8a (MS4A8B) and Epcam are not. Myc, Trp53 (tp53), Mdm2, Hif1a, and Nras are highly expressed while Egfr and Flt1 are not. MHC class I but not MHC class…
Molecular mechanisms of sorafenib action in liver cancer cells.
2012
Sorafenib, a multikinase inhibitor, recently received FDA approval for the treatment of advanced hepatocellular carcinoma (HCC). However, as the clinical application of sorafenib evolves, there is increasing interest in defining the mechanisms underlying its anti-tumor activity. Considering that this specific inhibitor could target unexpected molecules depending on the biologic context, a precise understanding of its mechanism of action could be critical to maximize its treatment efficacy, while minimizing adverse effects. Two human HCC cell lines (HepG2 and Huh7), carrying different biological and genetic characteristics, were used in this study to examine the intracellular events leading …
Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons
2010
et al.
MAD2 depletion triggers premature cellular senescence in human primary fibroblasts by activating a P53 pathway preventing aneuploid cells propagation.
2012
The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that ensures faithful chromosome segregation during mitosis and its failure can result in aneuploidy. Previously, it was suggested that reduction of the MAD2 gene, encoding a major component of the SAC, induced aneuploidy in human tumor cells. However, tumor cell lines contain multiple mutations that might affect or exacerbate the cellular response to Mad2 depletion. Thus, the scenario resulting by Mad2 depletion in primary human cells could be different and more complex that the one depicted so far. We used primary human fibroblasts (IMR90) and epithelial breast cells (MCF10A) to gain further insight on the effects …